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ABSTRACT 

 
 

This paper examines the performance of several panel data models to measure cost and 

scale efficiency in network industries. Network industries are characterized by a high degree 

of heterogeneity, much of which is network-specific and unobserved. The unaccounted-for 

heterogeneity can create bias in the inefficiency estimates. The stochastic frontier models that 

include additional firm-specific effects, such as the random-constant frontier model proposed 

by Greene (2004), can control for unobserved network effects that are random but time-

invariant. In cases like railway networks the unobserved heterogeneity is potentially 

correlated with other exogenous, but observed, factors such as network size and density. In 

such cases the correlation with explanatory variables may bias the coefficients of the cost 

function in a random-effects specification. However, these correlations can be integrated into 

the model using Mundlak’s (1978) formulation. The unobserved network effects and the 

resulting biases are studied through a comparative study of a series of stochastic frontier 

models. These models are applied to a panel of 50 railway companies operating over a 13-

year period in Switzerland. Different specifications are compared regarding the estimation of 

both cost frontier coefficients and inefficiency scores. 

 

 2



1. INTRODUCTION 

 

The railroad system in Switzerland consists of two sectors. The first sector includes the 

international and inter-regional transports. This sector is monopolized by the Swiss Federal 

Railways, which operates more than half of the railway networks in Switzerland. The second 

sector provides regional and local transport services that account for about a third of 

Switzerland’s railway passengers. This sector consists of 57 small private and regulated 

companies.1 These companies have regional monopoly in that they have an exclusive access 

to their assigned networks and different companies’ networks do not overlap with each other. 

Most of these companies have long-term contracts and are strongly subsidized by the cantons 

and the federal government. Given that most of Swiss cantons have financial problems, there 

is an increasing interest in the possibility of reducing the allocated subsidies by improving 

productive efficiency.  

The measurement of cost and scale efficiency in railway industry has been an important 

policy issue for the past several years in Switzerland. However, since these companies operate 

in different networks and environments, any method based on cost comparison has been 

subject to criticism.2 A high level of output heterogeneity is a general characteristic of 

network industries. Networks with different shapes have different organization and 

coordination problems, thus different costs. For instance, in the railway sector the production 

of 100 train-kilometers on a simple linear network is less costly than the same output in a Y-

shaped network. Other factors such as the density of stops can also affect the costs.  

                                                           
1 See Filippini and Maggi (1993) for more information. 

2 For instance, Filippini and Maggi (1993) estimated the efficiency level of the Swiss railways companies using 

Corrected OLS method, which in presence of a high heterogeneity in the production process, can lead to 

inaccurate inefficiency estimates. 
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Furthermore, different environmental characteristics influence the production process and 

therefore the costs. For instance, railway operation is more costly in a mountainous region 

than in a flat area. In general, the information is not available for all output and environmental 

characteristics. Many of these characteristics are therefore omitted from the cost function 

specifications.   

Unobserved firm-specific heterogeneity can be taken into account with conventional 

fixed or random effects in a panel data model. However, in these models all the unobserved 

time-invariant heterogeneity is considered as inefficiency. In order to distinguish 

heterogeneities such as external network effects from cost efficiency, Greene (2003, 2004) 

proposed an approach that integrates an additional stochastic term representing inefficiency in 

both fixed and random effects models. As shown in those papers, assuming that the 

inefficiency term follows a distributional form, both models can be estimated. In this paper 

we use a ‘true random-effects’ model, which is a random-constant frontier model, obtained by 

combining a conventional random-effects model with a skewed stochastic term representing 

inefficiency. The extended model includes separate stochastic terms for latent heterogeneity 

and inefficiency. Therefore, it should in principle, be able to provide better estimates of 

inefficiency.  In addition, since many of the unobserved factors, especially those related to the 

network’s shape, are likely to be correlated with the output and perhaps other explanatory 

variables, the random-effect estimators of the cost function coefficients could be biased. To 

overcome this shortcoming, the ‘true random-effects’ model has been adjusted for correlation 

between unobserved heterogeneity and explanatory variables using Mundlak’s (1978) 

formulation.3  

                                                           
3 The application of Mundlak’s adjustment in frontier models has been proposed by Farsi et al. (2003). 
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The success of these recently developed panel data models4 could lend certain support 

to the application of benchmarking methods in the regulation of strongly heterogeneous 

network industries such as Swiss railways. Provided that they can sufficiently control for the 

unobserved heterogeneity across firms, these methods can be used to estimate an order of 

magnitude for the sector or individual companies’ cost-inefficiency. In addition, in the case of 

railway networks, such analyses can be used to evaluate the bidding offers for the future 

tendering processes predicted by the new public transport policy.5 

The purpose of this paper is to study the potential advantages of these extended models 

in an application to Switzerland’s railway companies. In particular, our eventual interest is in 

models that can exploit the advantage of a fixed-effects model to have an unbiased estimate of 

the cost function without compromising the estimates of inefficiency scores. The models are 

estimated for a sample of 50 railway companies operating in Switzerland from 1985 to 1997. 

The alternative models are compared regarding the cost function slopes and inefficiency 

estimates. The conventional FE estimators of the cost function coefficients are assumed to be 

unbiased, thus used as a benchmark to which other models are compared. For the inefficiency 

estimates, the correlation between different models and the effect of econometric specification 

have been analyzed. The results suggest that the inefficiency estimates are substantially lower 

when the unobserved network effects are taken into account.  

                                                           
4 Greene (2003), Farsi et al. (2003) and Alvarez et al. (2003) are examples of application of such models in 

efficiency analysis. 

5 In line with the EU policy the Swiss government has introduced important regulatory reforms in the public 

transport system. The new policy act predicts a tendering process for the provision of regional railway services. 

The new system is believed to introduce greater incentives for competitive behavior. However, given the limited 

number of bidding companies in most regions, it is not clear to what extent these measures lead to efficient 

production.  
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The rest of the paper is organized as follows: Sections 2 and 3 present the model 

specification and the methodology respectively. The data are explained in section 4. Section 5 

presents the estimation results and discusses their implications, and section 5 provides the 

conclusions. 

 

2. MODEL SPECIFICATION 

 

A railway company can be considered as an aggregate production unit that operates in a 

given network and transforms labor and capital services and energy into units of transport 

services such as passenger-kilometers of public transport and ton-kilometers of freight. Given 

the extremely high number and types of different transport services, the measure of output 

requires an aggregation of outputs in one way or another.6  A practical way of getting around 

this approximation is to include output characteristics such as network length or average haul 

in the model. Different strategies have been used in the literature. Caves et al. (1985) used 

passenger-miles and freight ton-miles as output, and controlled for the average lengths of trip 

for freight and passengers and the number of route miles as output characteristics. Filippini 

and Maggi (1993) have considered a single-output production function with the number of 

wagon-kilometers as a measure of output and included the network length in their model 

specification. In their international analysis, Cantos et al. (1999) considered the aggregate 

number of passenger-kilometers and ton-kilometers as two outputs. Todani (2001) considered 

three types of wagon-miles (high-valued, bulk and others) as three main outputs and 

accounted for average length of haul and the number of road miles as output characteristics.  

                                                           
6 In the case of railways each relation between any two points in the space could be defined as an output type. 

From a practical point of view it is not possible to estimate a multi-product cost function with so many outputs. 

Therefore, an aggregation process is inevitable. 
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In this paper a two-output production process is assumed. The outputs are transported 

passengers measured by the total number of passenger-kilometers in a given year, and the 

transported freight measured as the aggregate number of ton-kilometers. The length of 

network is included in the model as output characteristics. Three input factors are considered: 

labor, capital and energy. A total cost function has been considered.  

Based on the above specification the total cost frontier can be represented by the 

following cost function:  

 

TC=f (Y, Q, N, PK , PL , PE , dt)      (1) 

 

where TC is the total annual costs; Y and Q are the numbers of passenger-kilometers and ton-

kilometers respectively; PK , PL  and PE  are respectively the prices of capital, labor and 

energy; N is the length of network and dt  is a vector including 12 year dummies from 1986 to 

1997 (year 1985 is the omitted category). The year dummies capture the cost changes 

associated with technical progress as well as other unobserved year-specific factors.7 

It is generally assumed that the cost function given in (1) is the result of cost 

minimization given input prices and output and should therefore satisfy certain properties.8 

Mainly, this function must be non-decreasing, concave, linearly homogeneous in input prices 

and non-decreasing in output. To estimate the cost function (1), a Cobb-Douglas (log-linear) 

                                                           
7 In the cost function estimations it is common to use a linear trend for technical progress. However, our 

preliminary regressions indicated that the time-variation of costs is strongly non-linear. In fact there is a gradual 

increase in the beginning of the sample period followed by a decrease in costs. These variations can be explained 

by many unobserved factors (such as changes in collective labor contracts or seasonal composition of the 

demand) that change uniformly across companies. 

8 For more details on the functional form of the cost function see Cornes (1992), p.106. 
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functional form is employed.9 The concavity assumption is automatically satisfied in this 

functional form. The linear homogeneity restriction can be imposed by normalizing the costs 

and prices by the price of one of the input factors. Here we considered the energy as the 

numeraire good. The other theoretical restrictions are verified after the estimation. The cost 

function can therefore be written as: 
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   with   i= 1, 2, ...., N   and    t = 1,2,…,Ti 
 

 

Subscripts i and t denote the company and year respectively, αi is a firm-specific effect and 

εit  is an iid error term. As we will explain in the next section, in the recent models proposed 

by Greene (2004), the stochastic term εit is composed of two parts: a skewed component 

representing inefficiency and a symmetric part for the random noise. 

 

3. ECONOMETRIC MODELS 

 

Stochastic frontier models have been subject of a great body of literature resulting in a 

large number of econometric models to estimate cost functions. Kumbhakar and Lovell 

 
9 As an alternative form we also evaluated the possibility of applying a translog functional form that can account 

for variation of scale economies with output. However, we decided to exclude this model because our study 

focuses on the efficiency estimates rather than scale economies. Moreover, the translog model requires a 

relatively large number of parameters, which creates certain numerical problems in the simulated likelihood 

maximization for the random-constant model. 
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(2000) provide an extensive survey of this literature. The main models used in this paper are 

based on Greene’s (2004) extension of the original frontier approach proposed by Aigner et 

al. (1977). In this framework, εit  as given in specification (2), is assumed to be a composite 

stochastic term with a normal-half-normal distribution, including both idiosyncratic effects 

and inefficiencies. The additional firm-specific term αi (see equation 2) represents the 

unobserved network heterogeneity and is assumed to have a normal distribution. This model 

is actually a stochastic frontier model in line with Aigner et al. (1977) with a random constant. 

This model is developed by Greene (2004) and is referred to as a “true” random-effects 

model.10 The estimation method is based on simulated maximum likelihood.   

The results are compared with other alternative models such as the fixed-effects model 

proposed by Schmidt and Sickles (1984) and the random-effects model proposed by Pitt and 

Lee (1981). Both these models are covered by the general form given in (2) with the 

difference that in the former model αi is a fixed effect and εit  is a zero-mean error term with 

no distribution restriction, and in the latter (Pitt and Lee) model αi is a random effect with 

half-normal (or truncated normal) distribution and εit  is a normal random error term. 

A summary of the five models used in the paper is given in table 1. The first model is a 

fixed effects (FE) model. In this model the firm-specific effects are considered as constant 

parameters that can be correlated with the explanatory variables. The coefficients are 

estimated through “within-firm” variations and therefore, are not affected by heterogeneity 

bias.11 In the cost frontier literature the inefficiency scores are estimated as the distance from 

                                                           
10 The name “true” is chosen to show that the model keeps the original frontier framework and the extension is 

done only by including an additional heterogeneity term.  

11 The term “heterogeneity bias” was used by Chamberlain (1982) to refer to the bias induced by the correlation 

between individual effects and explanatory variables in a random-effects model. See also Baltagi (2001) for an 

extensive discussion of fixed-effects (within) estimators.  
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the firm with the minimum estimated fixed effect, that is }ˆmin{ˆ ii αα − , as proposed by Schmidt 

and Sickles (1984). 

 

Table 1. Econometric specifications of the stochastic cost frontier 
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Model II is a random effects (RE) model proposed by Pitt and Lee (1981), which is 

estimated using the maximum likelihood method. The firm’s inefficiency is estimated using 

the conditional mean of the inefficiency term proposed by Jondrow et al. (1982),12 that is: 

1 2E , ,  ... Ei i i i iα ω ω α ω  =     where it i itω α ε= +  and 
1

1 iT

i
i tT itω ω

=

= ∑ .  The important limitation of 

this model is the assumption that the firm-specific stochastic term αi, which represents the 

firm’s inefficiency, is uncorrelated with the explanatory variables. Although it could be 

reasonable to assume that the firm’s cost-inefficiency is not correlated with exogenous 

variables,13 the firm-specific stochastic term may contain other unobserved environmental 

                                                           
12 See also Greene (2002b). 

13 Note that here the cost-efficiency does not include scale efficiency. 
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factors, which may be correlated with explanatory variables. Moreover, in both models (I and 

II), inefficiency indicators may include unobserved environmental factors, thus may overstate 

the firms’ inefficiency. There are however two factors that may exacerbate this problem in the 

FE model. First, unlike the RE model, the firm-specific effects do not follow a single 

distribution, thus can have a relatively wide range of variation. Secondly, these effects can be 

correlated with the explanatory variables, thus can also capture the heterogeneity factors that 

are correlated with the regressors. Whereas in the RE model in which the firm-specific effects 

are by construction uncorrelated with the regressors, these factors are suppressed at least 

partially through the “between” variations, into the regression coefficients. 

In the first two models (I and II), the firm’s inefficiency is assumed to be constant over 

time, thus captured by the firm-specific effects, while in other models inefficiency can vary 

across years. Model III is a pooled frontier model in that the sample is considered as a cross-

section and its panel aspect is neglected. The random error term is divided into two 

components: a normal error term vit capturing the noise and a half-normal random term uit 

representing the inefficiency as a one-sided non-negative disturbance.  This model is based on 

the original cost frontier model proposed by Aigner et al. (1977). The firm’s inefficiency is 

estimated using the conditional mean of the inefficiency term E it it itu u v +  , proposed by 

Jondrow et al. (1982). 

Models IV and V are extensions to model III that include an additional firm-specific 

random effect (αi) to represent the unobserved heterogeneity among firms. Model IV is 

Greene’s (2002a,b) true RE model.14  In this model it is assumed that the unobserved cost 

differences across firms that remain constant over time, are driven by network-related 

unobserved characteristics rather than inefficiency. Given the relatively long period covered 

                                                           
14 This model is a special case of a stochastic frontier model with random parameters (in this case random 

intercept).  
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in the data (12 years on average), this is a realistic assumption. The inefficiency term is 

assumed to be an iid random variable with half-normal distribution. This implies that the 

inefficiency is not persistent and each period brings about new idiosyncratic elements thus 

new sources of inefficiency. This is a reasonable assumption particularly in industries that are 

constantly facing new technologies. Therefore there are two justifications for such a 

specification in network industries: The first one is a practical assumption that persistent cost 

differences are related to unobserved heterogeneity across networks and the second one is 

based on the conjecture that the sources of inefficiency in network industries are dominated 

by new technology shocks and the incomplete adaptation of managers facing them.  

Model V is an extension of model IV that uses Mundlak’s (1978) specification to 

account for the potential correlation of unobserved network heterogeneity with the 

explanatory variables. Mundlak’s adjustment15 can be written as an auxiliary regression given 

by:  

i iX iα γ δ= +   
1

1 iT

i i
i t

tX X
T =

= ∑ , 2~ (0, )i N δδ σ      (3) 

where Xit is the vector of all explanatory variables and γ is the corresponding vector of 

coefficients. Equation (3) actually divides the firm-specific stochastic term into two 

components: The first part can be explained by exogenous variables, whereas the remaining 

component (δi) is orthogonal to explanatory variables. The advantage of this model is that it 

allows for a time-variant inefficiency term while minimizing the heterogeneity bias. The 

heterogeneity bias can be avoided to the extent that the auxiliary equation can capture the 

correlations.16  

                                                           
15 See also Hsiao (2003), pp. 44-46, for an extensive discussion of Mundlak’s formulation. 

16 Notice that the heterogeneity bias would be zero if the error term (εit) were symmetric. In this case it can be 

shown that Mundlak’s adjustment turns the estimator into a within estimator.  
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In our comparative analysis we consider two aspects of the models’ performance. The 

first dimension is the estimation of the cost function’s coefficients.  In railway companies the 

operating costs are affected by network characteristics, which may be correlated with 

explanatory variables such as network’s size and input factor prices. For instance, larger 

networks are more likely to have more complex shapes. Denser networks are usually located 

in areas with higher population density, where wages are relatively high. Such relationships 

imply a positive correlation between the output level and labor price with the network 

complexity, which is not fully captured by the included factors in the model. The Hausman 

test is used to confirm that the firm-specific effects are correlated with the explanatory 

variables. In this case the FE estimators (model I) are unbiased, thus provide a benchmark to 

which other models can be compared.  

The second aspect of the models’ performance concerns the inefficiency estimates. It is 

important to note that the consistency of slopes (coefficients) does not necessarily imply that 

inefficiency estimates are unbiased. Interestingly, the empirical results suggest that there is a 

trade-off in estimations. Namely, models (like the FE model) with a good performance on 

slopes have strongly biased inefficiency estimates.17 Roughly speaking, the heterogeneity bias 

may be suppressed into the slopes as it appears in the RE model, or into the efficiency 

estimates as observed in the FE model. Farsi et al. (2003) provide a discussion on this issue. 

The results of that study on a sample of nursing homes suggest that Mundlak’s formulation 

can be helpful to reduce the heterogeneity bias in both slopes and inefficiency estimates at the 

same time. In this paper we use a similar approach to study if such a conclusion can be 

applied to a network industry.  

One should bear in mind that the inefficiency estimation requires a certain interpretation 

of the stochastic terms in the model. In the frontier literature, starting from Aigner et al. 

                                                           
17 See Farsi et al. (2003) for a discussion of this point. 
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(1977), it is commonly accepted that the skewed stochastic term with a certain distribution 

represents inefficiency. For instance a half-normal distribution through its zero mode, implies 

that any company is most likely to be completely efficient. Moreover, implicit in this model is 

the assumption that inefficiency is uncorrelated with all exogenous variables and also with the 

idiosyncratic variations reflected in the symmetric error term.18  This is a legitimate and 

helpful assumption from a practical point of view. In fact, through this assumption all the 

inefficiencies that are somehow related to exogenous variables such as factor prices and 

output are excluded from the firm’s productive inefficiency. Later studies like Cornwell et al. 

(1990) and Battese and Coelli (1992) extended the original framework to include exogenous 

variables in the distribution of the inefficiency term. However, in this paper we maintain the 

original assumption such that the efficiency measures are restricted to the sources that are 

completely uncorrelated with all exogenous variables, which by definition are beyond the 

firm’s control. The only exception is the FE model (model I) that allows any correlation of 

inefficiency scores. Furthermore, we assume that the inefficiency can vary over time, thus for 

the inefficiency estimates we focus on models III, IV and V. 

 

4. DATA 

 

The data set used in this paper is extracted from the annual reports of the Swiss Federal 

Office of Statistics on public transport companies. The companies operating in main urban 

centers are excluded from the sample. Most of these companies operate inner-city tramways 

and buses, whose functioning is quite different from trains. We also excluded one other 

company whose extremely low total costs and energy expenses suggest the possibility of a 

                                                           
18 Here, cost inefficiency is defined as the excess costs due to the firm’s technical problems or to suboptimal 

allocation of resources. Thus, scale inefficiencies, which are related to suboptimal output, are excluded.  
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reporting error. The final sample includes 50 railway companies over a 13-year period from 

1985 to 1997. The sample is an unbalanced panel with number of periods (Ti) varying from 1 

to 13 and with 45 companies with 12 or 13 years, resulting in 605 observations in total.19 The 

available information for any given year includes total costs, labor and energy expenses 

separately, total number of employees, the quantity of consumed electricity, network length, 

total number of seats, and total number of train-kilometers, passenger-kilometers and ton-

kilometers.  

Capital costs are calculated as the residual costs after deducting the labor and energy 

expenses from the total costs. These costs are mainly related to equipment and materials. 

Total number of seats is used as a proxy for capital stock.20 Thus, the capital price is 

calculated as the residual expenses per seat. The passenger and freight outputs are 

respectively measured by the number of passenger-kilometers and ton-kilometers. In 

Switzerland, each railway company is required to run a certain minimum number of trips per 

day for any given connection, specified by the cantonal regulators. Therefore, the number of 

train-kilometers or wagon-kilometers could be also an appropriate measure of passenger 

output. However, in order to be consistent with the recent literature21 and also given that there 

is a high correlation between train-kilometers and passenger-kilometers (a correlation 

coefficient of 0.97 in our sample) we adopted the number of passenger-kilometers and ton-

kilometers. All the costs and prices are adjusted for inflation using the Switzerland’s global 

price index and are measured in 1997 Swiss Francs.   

                                                           
19 The average number of periods in the sample is 12 years. For 37 companies, the data are available for 13 

years. Eight other companies have 12 years available. The number of years available for the remaining five 

companies is respectively 1, 3, 7, 7 and 10.  

20 See Filippini and Prioni (2003) for a similar approach. 

21 Some recent examples are Mancuso and Reverberi (2003), Estache et al. (2002), Cantos et al. (1999) and 

Banos-Pino et al. (2002).   
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Table 2. Descriptive statistics (605 observations) 
 

 Mean Standard 
Deviation Median Min. Max. 

Total annual costs 
(TC) CHF million  26.73 49.88 8.83 2.12 307.43 
 
Passenger output (Y) 
×106 passenger-kms 30.80 55.10 10.00 0.41 311.00 
 
Average cost (CHF 
per passenger-km) 1.20 0.76 1.09 0.33 5.98 
 
Goods output (Q)  
×106 ton-kilometers 10.20 52.70 0.27 0.00015 477.00 
 
Network length (N) 
(km) 39.43 56.64 22.82 3.90 377.00 
 
Capital price (PK) per 
seat (CHF '000) 4.53 2.13 4.03 1.04 14.47 
 
Average labor price 
(PL) per employee 
per year (CHF '000) 86.05 6.48 86.09 60.93 104.93 
 
Energy (electricity) 
price (PE) CHF/ kWh 0.157 0.023 0.158 0.076 0.265 
      

 
 

- All monetary values are in 1997 Swiss Francs (CHF), adjusted for inflation by Switzerland’s 
global consumer price index. 

 
 

 

Table 2 provides a descriptive summary of the main variables used in the analysis. As it 

can be seen in this table, the total costs show a high variation in the sample. The average cost 

of a passenger-kilometer varies from 0.3 to about 6 Swiss Francs. There is also a considerable 

variation in input prices and both outputs in the sample. Given the importance of within 

variations in most panel data models (especially the fixed-effect model), it is helpful to 

distinguish these variations from the variations across companies. Table 3 gives a summary of 

“within” and “between” variations for the main variables used in the regressions. As it can be 
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seen in this table, the dependent variable and most explanatory variables show a fairly 

considerable amount of within variation, supporting the use of a fixed-effect model. As 

expected, the within variation of network length is relatively low (limited to 7 percent).  

 

 

Table 3. Within and between variations (50 companies and 12 years on average) 
 

Standard Deviation  Mean Overall Between Within 
Fraction of 

within variation 

ln
E

TC
P

 
 
 

 11.31 1.10 1.12 0.15 0.14 

 
ln (Y)  16.32 1.34 1.34 0.12 0.09 
 
ln (Q)  12.49 2.72 2.78 0.61 0.22 
 
ln (N) 3.20 0.91 0.93 0.06 0.07 

ln K

E

P
P

 
 
 

  10.18 0.44 0.39 0.19 0.43 

ln L

E

P
P

 
 
 

 13.22 0.16 0.13 0.10 0.62 
      

 

- For each variable (X) the between standard deviation is based on companies’ average values that 

is: 
1

1 iT

i
i t

itX X
T =

= ∑ ; and the within standard deviation is based on deviations from companies’ 

averages ( it iX X− ). The overall and within statistics are calculated over 605 company-years 
and the between statistics are calculated over 50 companies. The fraction of within variation is 
calculated as the ratio of within to overall standard deviation. 

 

 

5. ESTIMATION RESULTS 

 

The estimation results for the five models are given in table 4. These results show that 

the output and input price coefficients are positive and highly significant across all models. 

The estimated coefficients show a considerable variation across different models. The 
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estimates from the pooled model (III) are particularly different from those of other models. 

The year dummies are mostly significant and suggest that the cost variation over time is not 

linear. Again, the pooled model is an exception in which none of these dummies show any 

statistically significant effect. Noting that model III completely ignores the panel structure of 

the data, its estimates are likely to be strongly biased by omitted firm-specific variables. On 

the other hand the fixed-effects estimators (model I) are derived from the within-firm 

variations and thus unbiased.   

The year dummy coefficients (excluding model III) show that the total costs of railway 

companies rose almost linearly from 1985 to 1992 with an average annual growth rate of 

about 1.6%, but declined after 1992 with an average rate of about 1.5% per year. Since total 

costs and all the continuous explanatory variables are in logarithms, the estimated coefficients 

can be interpreted as average cost elasticities. For instance, the output coefficients suggest that 

on average a one percent increase in passenger-kilometers will increase the costs by 0.11 to 

0.49 percent depending on the adopted specification. The marginal effect of ton-kilometers is 

about 10 times lower, suggesting substantially lower variable costs for goods transportation. 

The coefficient of network length indicates that the marginal cost of a one percent extension 

in the network keeping the output constant, is approximately equivalent to 0.4 percent 

increase in costs. These results are consistent with the previous empirical results regarding 

Switzerland’s railroad industry (cf. Filippini and Maggi, 1993) in that they suggest increasing 

returns to scale. Following Caves et al. (1985), parameters αY , αQ and αN  can be employed to 

calculate the value of the economies of scale and density.22 All the results obtained from 

                                                           
22 Economies of density (ED) are defined as the proportional increase in total costs brought about by a 

proportional increase in both outputs, holding all input prices and the size of the network fixed. Economies of 

scale (ES) are defined as the proportional increase in total costs resulting from a proportional increase in both 

outputs and the size of the network, holding all input prices fixed. See Jara-Díaz and Basso (2003) and Oum and 

Waters (1996) for a discussion on the definition and interpretation of scale and density economies.  
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different models suggest that the Swiss railway companies do not fully exploit the potential 

scale and density economies. 

Table 4 also indicates that if the pooled model is set aside, the input price coefficients do 

not vary significantly across different models. The coefficient of labor price, varying between 

.55 and .57 (bar model III), is actually comparable to the average share of labor expenses, 

which is about 52% in the sample. The capital price coefficient varies between .31 and .32 

(model III excluded), which is considerably below the average share of capital costs in the 

sample (44%). This result may suggest that the companies are not so responsive as a 

constantly cost minimizing behavior should be, to the changes in capital prices. This can be 

explained by the fact that in the short run railway companies cannot vary much of their capital 

stock such as equipment and machinery.  

Comparing the results from different models in table 4 shows that excluding model III, 

all other models have reasonably comparable coefficients. In model III (pooled model) 

variations over time and within firms are treated exactly similar to those between different 

firms. Moreover, the unobserved firm-specific effects are completely neglected, which may 

bias the estimations. A Lagrange Multiplier test on an OLS model strongly rejects the 

hypothesis that the residuals of a given company are uncorrelated (test statistic of 2990 for a 

chi-square with 1 degree of freedom), suggesting that the pooled model is mis-specified.  

Moreover, the Hausman test rejects the hypothesis that the firm-specific effects are 

uncorrelated with the explanatory variables (test statistic of 61.5 for a chi-square with 17 

degrees of freedom). This result suggests that models that do not account for these 

correlations can give biased results. Given the relatively high number of periods (on average 

12 years) and the reasonable within-company variations (see table 3) in the sample, the fixed 

effects model’s results can be considered as unbiased estimates of the cost function 
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parameters. Therefore, the coefficients estimated from model I are used as a benchmark for 

assessing the potential heterogeneity bias in other models.  

Compared to model I, the parameter estimates in the pooled model (III) have the highest 

differences. The estimated coefficients in the remaining models are fairly close to those of the 

FE model, suggesting that heterogeneity biases in the coefficients are not substantial. This 

statement does not apply to the inefficiency estimates, which as we will see later, show 

considerable biases. As seen in table 4, there is no clear distinction between models II and IV 

concerning the heterogeneity biases. While in certain coefficients model IV is closer to the 

unbiased estimates (model I), in some others model II shows a ‘better’ performance.  

The random effects specification in both models II and IV has however a shortcoming in 

that the firm-specific heterogeneity terms (ui in model II and αi in model IV) are assumed to 

be uncorrelated with the explanatory variables. If we put any trust in the Hausman 

specification test, this assumption is not realistic. Moreover, as discussed earlier, it is 

plausible that some of the unobserved network characteristics be correlated with the network 

length. Such correlations are taken into account in model V through the auxiliary coefficients 

(γx). The results in table 4 indicate that model V shows the smallest differences with the 

unbiased estimators of model I. This suggests that applying Mundlak’s (1978) adjustment to 

the TRE model (model IV) can decrease the heterogeneity biases. As shown in the table, the 

auxiliary coefficients (γx) are all significant. These coefficients can be interpreted as the 

correlation effect between the unobserved firm characteristics and the corresponding 

explanatory variable. For instance, the positive signs of γY and γQ suggest that keeping all 

observed factors fixed, networks with higher outputs are more likely to belong to the ‘high-

cost’ or ‘difficult’ networks; and the negative signs of γN, γK and γL suggest that larger 

networks and companies that have higher input prices are more likely to be in the ‘low-cost’ 

category.  
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Table 4. Regression results 
 

 Model I 
FE 

Model II 
RE 

Model III 
Pooled 

Model IV 
True RE 

Model V 
True RE + 
Mundlak 

αY .114* 
(.032) 

.200* 
(.030) 

.492* 
(.015) 

.133* 
(.023) 

.106* 
(.034) 

αQ .014* 
(.006) 

.021* 
(.003) 

.030* 
(.006) 

.038* 
(.004) 

.017* 
(.003) 

αN .448* 
(.051) 

.485* 
(.039) 

.393* 
(.026) 

.432* 
(.015) 

.488* 
(.035) 

αK .318* 
(.017) 

.310* 
(.010) 

.171* 
(.032) 

.312* 
(.008) 

.315* 
(.009) 

αL .546* 
(.037) 

.548* 
(.029) 

.592* 
(.074) 

.568* 
(.036) 

.562* 
(.034) 

γY _ _ _ _ .159* 
(.050) 

γQ _ _ _ _ .090* 
(.013) 

γN _ _ _ _ -.150* 
(.056) 

γK _ _ _ _ -.189* 
(.067) 

γL _ _ _ _ -.193 
(.180) 

α1986 .010 
(.015) 

.009 
(.041) 

.009 
(.056) 

.022 
(.027) 

.017 
(.035) 

α1987 .020 
(.015) 

.012 
(.031) 

.003 
(.056) 

.032 
(.025) 

.029 
(.031) 

α1988 .039* 
(.015) 

.028 
(.044) 

.010 
(.057) 

.051 
(.037) 

.049 
(.050) 

α1989 .065* 
(.016) 

.052 
(.046) 

.036 
(.057) 

.076* 
(.033) 

.074 
(.050) 

α1990 .084* 
(.016) 

.068 
(.036) 

.024 
(.058) 

.097* 
(.034) 

.94* 
(.044) 

α1991 .098* 
(.017) 

.078* 
(.029) 

.030 
(.058) 

.114* 
(.028) 

.111* 
(.035) 

α1992 .111* 
(.017) 

.094* 
(.034) 

.046 
(.058) 

.130* 
(.026) 

.122* 
(.034) 

α1993 .100* 
(.017) 

.081* 
(.034) 

.015 
(.057) 

.119* 
(.026) 

.112* 
(.034) 

α1994 .082* 
(.017) 

.063 
(.040) 

-.001 
(.056) 

.103* 
(.037) 

.093* 
(.039) 

α1995 .059* 
(.016) 

.048 
(.032) 

.019 
(.057) 

.081* 
(.023) 

.064 
(.034) 

α1996 .037* 
(.017) 

.028 
(.024) 

.027 
(.057) 

.066* 
(.022) 

.043 
(.025) 

α1997 .038* 
(.018) 

.030 
(.032) 

.019 
(.060) 

.063 
(.039) 

.042 
(.032) 

α0 _ -4.90* 
(.57) 

-8.31* 
(.98) 

-3.89* 
(.51) 

-1.89 
(2.66) 

σα _ _ _ .783* 
(.027) 

.751* 
(.058) 

2 2
u vσ σ σ= +   

_ 
.807* 
(.14) 

.464* 
(.001) 

.109* 
(.005) 

.095* 
(.005) 

u vλ σ σ=  _ 
 

11.37* 
(3.81) 

2.88* 
(.30) 

2.58* 
(.56) 

1.59* 
(.031) 

 

 

- Standard errors are given in brackets. *  means significant at less than 5%. 
- The sample includes 605 observations (50 railway companies). 
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 Table 5 provides a descriptive summary of the inefficiency estimates from different 

models (see table 1, last row). These estimates represent the relative excess cost of a given 

firm compare to a minimum level that would have been achieved if the firm had operated as 

efficiently as the ‘best practice’ observed in the sample. In comparing different models it 

should be noted that in the first two models (I and II), the inefficiency is assumed to be 

constant over time. Moreover, in these models all the unobserved firm-specific differences are 

interpreted as inefficiency. As expected, both models I and II, especially the FE model, 

predict rather unrealistic inefficiency scores averaging about .7 to .8 and up to a maximum of 

2 to 2.5. According to these models, a typical company can save about a third of its costs by a 

more efficient allocation of resources. These high values indicate that the heterogeneity across 

companies is an important driver of cost differences and that neglecting it may create a 

substantial upward bias in inefficiency scores.      

 

Table 5. Inefficiency measures 
 

 Model I 
FE 

Model II 
RE  

Model III 
Pooled 

Model IV 
True RE 

Model V 
True RE 

with 
Mundlak 

Mean 0.813 0.696 0.343 0.078 0.063 

Median 0.676 0.662 0.289 0.061 0.053 

Maximum 2.507 1.992 0.848 0.386 0.311 

95 percentile 1.723 1.470 0.848 0.187 0.134 

Minimum 0.000 0.160 0.060 0.011 0.012 

N 605 605 605 605 605 
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In model III the inefficiency estimates are in a more realistic range, with an average of 

.34 and a maximum value of .85. These values though still too high to be convincing, are 

substantially lower than those predicted by models I and II; and this despite the fact that the 

pooled model (III) does not account for unobserved heterogeneity. This attenuation of 

inefficiency estimates can be explained by the structure of the inefficiency term in model III. 

Given that the inefficiency term (uit) is assumed to be independently and identically 

distributed over time and across companies, it cannot fully capture the firm-specific 

differences that are time-invariant, thus such differences are partly suppressed into and bias 

the model’s coefficients.  

Both models IV and V, which have separate stochastic terms for inefficiency and firm-

specific heterogeneity, have quite reasonable inefficiency estimates about 6 to 8 percent on 

average and 31 to 38 percent on maximum. The substantial decrease in these values compared 

to other models, suggests that these models can separate to a considerable extent, the 

heterogeneity from the inefficiency. To understand the reasons behind these results, it is 

helpful to note that the sole difference between models III and IV is that model IV includes an 

additional firm-specific random term (αi). This term represents the variations across firms, 

which are about 7 times larger than the variation within firms (compare σα to σ in the lower 

panel of table 4).  

Given that the unobserved heterogeneity is potentially correlated with the explanatory 

variables, and that these correlations are not taken into account in model IV the resulting 

inefficiency scores may capture some of these differences. This issue can be explored by 

comparing models IV and V. In model V the time-invariant cost differences across companies 

are separated from inefficiency estimates (as in model IV). In addition, the possible 
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correlations with explanatory variables are mitigated through auxiliary coefficients. The 

results in table 5 show that when such correlations are controlled for (model V), the 

inefficiency estimates slightly decline (by about .015 on average and by .075 on maximum). 

According to this model the average (median) company is only 6.3 (5.3) percent inefficient, 

and the maximum inefficiency in 95 percent of the sample is limited to 13.4 percent. These 

results suggest that model V not only provides unbiased, or close to unbiased, estimates of the 

cost function’s coefficients, it can also better separate the heterogeneity from inefficiency. 

The pair-wise correlation coefficients between the inefficiency estimates from different 

models are listed in table 6. In order for the correlation coefficients to be comparable, they are 

calculated at the firm level using 50 observations (one observation for each firm). Namely, in 

models with time-variant efficiency, the inefficiency score is calculated as the firm’s average 

inefficiency score over the sample period. For models with time-variant inefficiency the 

correlation coefficients are also given over the 605 observations.  

As shown in table 6, models I and II, and models IV and V show a relatively high 

correlation.23 However, except a few cases the correlation coefficients are quite low, 

suggesting substantial differences across models.24 Especially, models IV and V show a 

negative correlation with all other models. Given that the correlation coefficients are 

calculated on company-average inefficiency scores, the weak (and negative) correlations may 

suggest that the inefficiency estimates vary considerably from one year to another, in which 

case the correlation between models with constant and time-variant inefficiency should be 

weak. However, this can only partly explain the observed correlations. In fact the positive and 

fairly strong correlation between the pooled model III (with time-variant efficiency) and both 

                                                           
23 These results are consistent with Farsi et al. (2003) who used a similar methodology for a sample of nursing 

homes. 

24 The rank correlations show similar patterns. These results are omitted to avoid repetition. 
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models I and II (with time-invariant efficiency) indicates that averaging cannot explain the 

negative correlations.  

 

Table 6. Pair-wise correlation between inefficiency estimates  
 

 Model I 
FE 

Model II 
RE 

Model III 
Pooled 

Model IV 
True RE 

Model V 
True RE 

with 
Mundlak 

Model I 1     

Model II .932* 1    

Model III .497* .614* 1   

Model IV -.247 -.256 -.158 
  [.092*] 1  

Model V -.334* -.320* -.197 
  [.105*] 

.948* 
 [.971*] 1 

 
- The correlation coefficients have been estimated over the firms (50 observations) that is, average 

values over the sample period are used in models with time-variant inefficiency (III, IV and V). 
- Correlation coefficients based on 605 observations are given in brackets. 
- *  means significant at 5%. 

 

The negative correlation coefficients (table 6) point to a striking distinction between the 

models IV and V and all other models, which do not distinguish unobserved heterogeneity 

from inefficiency. The negative correlations manifest especially in model V in which the 

correlations with observed factors are taken into account. These values suggest that some of 

the unobserved network characteristics may actually be negatively correlated with company’s 

average inefficiency. One interpretation is that the relatively complex thus costly networks are 

more likely to be operated by an efficient management. This is a plausible explanation 

because the companies with complex networks are more likely to have a general awareness 

and perhaps the required expertise for technical problems. Such expertise can directly or 

indirectly contribute to the firm’s efficiency. The results in table 6 highlight the importance of 
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unobserved heterogeneity, as failure to account for such factors can result in a completely 

misleading and even reverse picture of inefficiencies.  

 

6. CONCLUSION 

 

Alternative cost frontier models applied to a panel of Swiss railway companies indicate 

that the estimations particularly the inefficiency estimates, are sensitive to the adopted 

specification. The data show a considerable unobserved firm-specific heterogeneity that is 

likely to be correlated with explanatory variables.  In such cases unbiased coefficients can be 

obtained from the fixed effects model. This model’s estimates of inefficiency are however 

unrealistic. In fact, comparing the results across different models suggest that the inefficiency 

estimates largely depend upon how the unobserved heterogeneity across firms is specified. 

Panel data models such as Pitt and Lee (1981) and Schmidt and Sickles (1984) that do not 

distinguish between unobserved firm-specific heterogeneity and inefficiency can overestimate 

the overall inefficiencies or even give misleading patterns of inefficiency. The cost frontier 

random effects model labeled as ‘true’ random-effects model (Greene, 2004) provides 

reasonable estimates of inefficiency confirming that the inefficiency estimates in other models 

are confounded with unobserved heterogeneity such as network effects. However, the 

problem of this model is that because of potential correlation between heterogeneity and 

explanatory variables, the cost function coefficients may be biased (heterogeneity bias), 

especially as the Hausman specification test confirms the presence of such correlations. 

Using an auxiliary equation in line with Mundlak (1978) can be helpful in this regard. 

This adjustment has been applied to the ‘true’ random effects. The resulted specification not 

only proves a very low level of heterogeneity bias, it slightly reduces the inefficiency 

estimates. The high correlation between the inefficiency estimates across the two models 
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suggests that in so far as the heterogeneity is accounted for, the correlation between 

heterogeneity and explanatory variables does not considerably affect the inefficiency 

estimates.  
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